Event

25
Jun

New energy source replaces gasoline from water and rabbit battery

For a long time, we humans are relying too much on fossil energy sources, especially oil. Therefore, scientists are constantly exploring to replace them with new sources of energy that are cleaner, safer and more sustainable.

Hydrogen raw material is the highly expected solution. However, previously, to produce hydrogen, people need rare metals like platinium and iridium. Therefore, the cost of generating hydrogen is too great.

But it will all become a thing of the past with new equipment made by experts from Stanford University. This is an electrolysis machine that separates hydrogen from water at extremely low cost. The materials that make up the device only include a nickel, iron and a 1.5V battery.

The device works continuously for 7 days without any problems!

The reason electrolysis equipment produces a lot of hydrogen is by the construction of two electrodes from nickel – iron oxide. The spread of particles into metal particles pressed together increases the contact area in the water of the poles. As a result, hydrogen is produced more and consumes less energy.

Chemical mechanism when electrolytic water

Yi Cui, a Stanford professor of materials science and engineering, commented, “This process creates very strongly connected microscopic particles, so the catalysts will have good and stable electrical conductivity. Moreover, the use of nickel and iron catalysts have more advantages because of low cost.

Haotian Wang, the owner of the invention, said that the electrolytic device is very stable, can maintain itself for 1 week with an efficiency of 82% at room temperature.

25
Jun

Spain generates electricity from tornadoes

Vortex technology is shaped like pillars poking straight into the sky. Instead of capturing energy through the rotation of the propeller, the bladeless wind turbine generates electricity through vortex movement, the aerodynamic phenomenon that creates tornadoes.

Wind power technology has a simple shape, like large pillars poking straight into the sky. (Photo: Vortex)

Vortex’s shape was developed by computer technology to ensure the swirling winds work simultaneously throughout the column body. In the first version, the column body was made of a mixture of fiberglass and carbon fiber, allowing it to move at maximum. The bottom of the column is two opposing magnets, acting as a non-electric motor. When the pole oscillates in one direction, the magnet pulls it in the opposite direction. This kinetic energy is then converted into electricity through an electric knife.

In terms of performance, a Vortex Mini with a height of about 12 m can collect 40% of wind energy in ideal conditions (when the wind reaches 42 km / h). According to experimental results, Vortex Mini gains 30% less energy than current wind turbines, however, with the same area of ​​fan turbine, we can place two Vortex.

The developers claim that the technology costs 51% less than current technologies because of the absence of gears, bolts or machine moving devices, and maintenance costs are also lower. In addition, technology also has many other advantages such as not making noise and safety for birds.

The researchers expect the first product to be a 100-watt, 2.7-meter high turbine that will be released by the end of this year.

 

 

25
Jun

Manufacturing capacitors from storms

New materials for making high-end electronic components are often expensive and are of high technology. But a team in France recently showed that energy storage components called supercapacitors can be made from a very “dirt” material called grilled seaweed.

Francois Béguin of the Center for CNRS Research on Isolation in the city of Orléans (France) and colleagues say seaweed, when burned into a coal-like form, would become a suitable material to create an electrode in high-performance supercapacitors,works well not lose carbon materials originally used in commercial devices.Mildred Dresselhaus, a carbon materials expert at Massachusetts Institute of Technology (MIT), points out that coconut husks have been used as porous carbon to produce water filters and for other applications. The polymer derived from the seaweed that Béguin produces (called alginate) is non-toxic and has been used as a thickener in food and cosmetics. Each year 20,000 tons of alginate is extracted from seaweed, so the price is very cheap.

Supercapacitors replace batteries in storing power in mobile electronics. It consists of a pair of plates, or electrodes, that carry a charge that can be switched on / off, creating an electric current. Capacitors can provide more power – higher currents or voltages – than batteries, but store less total power. They can be applied as emergency power to computers or auxiliary power in electric vehicles, for example, they can store the energy collected during braking.

The amount of energy stored in a capacitor depends on the charge on the electrodes. Many current supercapacitors have electrodes made from a porous form of graphite-like material, called activated carbon, which is cheap and can store electricity. However, porosity is a disadvantage due to the storage of a large amount of electric charge in a low density material that requires a large amount of material, which is not suitable for applications in small electronic devices.

What Béguin and his colleagues really need is a relatively thick, conductive carbon that is capable of storing large amounts of electricity. Researchers think that cellulose (plant fiber) may be appropriate because it contains a lot of stored oxygen atoms but most of the oxygen is gone when heating cellulose. They then thought of alginate, an excess in brown seaweed, which is chemically similar to cellulose but can hold oxygen when heated.

The French team cooked alginate in an airless enclosure to turn it into black powder. Next, they combined the powder with a polymer to create the hard material they shape into electrodes to use for supercapacitors. The amount of charge and energy these devices can store is relatively equal to those made from activated carbon. However, seaweed capacitors can be charged at twice the voltage without breaking, as the material is twice as thick. Besides, it is also highly durable, and its stored charge decreases by only 15% after every 10,000 charge cycles. Béguin said it will quickly commercialize the material and some companies show interest in the technology.

 

 

20
Apr

Visit the largest machine in human history

Learn about analyzers, computer systems … spread out in a 27 km circumference under the giant LHC particle accelerator project, viewers will understand more about the operation of the planet’s most expensive machine. man-made.

Learn about the greatest machine in human history

Observing from the universe, the scientists found that ordinary matter such as galaxies, stars and planets accounted for only 4% of the universe. The rest is black matter (23%) and dark energy (73%). Physicists believe that the Large Hadron Collider (LHC) could open the door to these cognitive gaps.

The main purpose to build it is to break the current limitations and fundamental theories of particle physics. CERN head, French physicist Robert Aymar said: “The findings from the € 6.4 billion ($ 9.2 billion) project, bringing together researchers from 50 countries will bring improvements. ever-great scientific set. ”

The LHC began testing in 2008, but failed after a few days because of helium leakage. After the problem is fixed, it works again. But in the first few days of November 2009, the machine broke down again due to the sudden increase in temperature in many parts. Up to now, the repairing work is completed. The first proton went through a 27km long tunnel.

Structure of an LHC
The giant LHC machine contains more than 1,000 giant magnets to guide the proton in the machine’s pipe, at a speed of 11,000 rpm, roughly the speed of light.

Swiss and French border areas with three circles. The smallest ring (lower right) is the Synchrotron Proton, the middle ring is the Super Proton Synchrotron (SPS) with a circumference of 7 km and the largest is LEP, with a portion of Lake Geneva having a circumference of 27 km. The LHC can accelerate particles to energies of 14 TeV (14,000 billion electron volts).

Diagram of the location of the Analysis Units in the 27km Tunnel. LHC is currently operating at 3.5 TeV. It is only half the design capacity but is three and a half times higher than the world’s second largest particle accelerator, the US Tevatron.

The magnet system of the machine is cooled by liquid helium. The machine is located at a depth of 100 m below the ground in the French-Swiss border area. The tunnel has a diameter of 3.8 m, has a concrete structure and was built between 1983 and 1988.

Six analyzers (detectors) have been built into the LHC system, located in large burrows below the ground excavated at the LHC intersections. Two of them, ATLAS (black matter detector) and Compact Muon Solenoid (CMS) (Higgs detectors, “Lord’s particles”) are large multi-purpose particle analyzers. A set of A Large Ion Collider Experiment (ALICE) and LHCb with more specific functions are responsible for understanding moments after Big Bang’s “clones” and detecting antimatter particles. The other two are much smaller, TOTEM and LHCf, for other specialized research

Here are pictures of the analyzers:

ATLAS – one of two multi-purpose analyzers, will be used to look for new physical signs, including the origin of mass and auxiliary dimensions. ATLAS detectors contain a dense array of concentric pillars, where there is interaction of the collision proton beam.

Like ATLAS, the Compact Muon Solenoid (CMS) will scour the Higgs particles and look for clues about the nature of dark matter. In the picture is the inner “Heart” of the CMS machine.

ALICE will study a “liquid” form of matter called a plasma quark-gluon, a very short-lived form after the Big Bang.

LHCb – compares the amounts of matter and antimatter produced during the Big Bang. The LHCb will try to find out what happened to “lost” antimatter. LHCb is very large, 6X7 square meters consisting of 3,300 blocks containing scintillator, optical fiber and lead. It will measure the energy of particles produced during proton-proton collisions.

TOTEM – measure the size of the proton and LHC’s luminosity. In quantum physics, brightness affects the accuracy of a large particle accelerator in conflict creation.

LHCf – study of naturally occurring cosmic rays.

Computer System

The computing system for the LHC project is also the largest computer network in the world. The collisions of photons are stored on computers with a capacity of 15 terabytes of data each year. Most of the data will be stored in Oracle databases and some commercial storage systems.

The role of the computer network that CERN establishes is to gather vast computational and storage power to give scientists the ability to access data and computational tools as needed. The sites on this grid also include universities and research centers from Japan to Canada, plus two HP laboratories.

Supermicro Server system at the Calculation Center of LHC Project.

All computing systems contribute power with a total of more than 10,000 processors and hundreds of millions of gigabytes of tape and disk storage. Information about collisions of particles in the accelerator is sent to all research centers in Europe, Asia and the USA for data storage and processing.

Many mysteries of physics and the universe are the goal of experiments. The impact of the LHC experiment will be greater than that of going to the moon for the first time. It is hard to predict the actual benefits of this project.

Heavy duty of a billion-dollar machine
Experts with the LHC, the European Nuclear Research Organization (CERN), estimate the cost of repairs and other safety related to the LHC is about US $ 37 million. The money comes from the budgets of the 20 countries involved. Currently, no country member of CERN has expressed its opposition to the LHC project.

This is the core inside of the LHC. More than 15 countries provide funding for the construction of a large particle accelerator. More than 8,000 scientists and hundreds of universities and laboratories have participated in designing the machine

With the LHC super-powerful particle accelerator, scientists can study particles at sizes of 1/10 billion billion meters, measuring times of 1/10 million billion billion seconds. “We will know what the universe has at 1 / 1,000,000 of a second right after the Big Bang and that is amazing,” said physicist Robert Aymar.

The test was performed on a magnet section in the LHC tunnel. It is important that each magnet is properly positioned so that the beam path is precisely controlled.

The goal of the experiment is also to find “Higgs particles”, a type of elementary particle belonging to the subatomic particle group (smaller than the atom), which is the type of particle that creates mass for matter and creates the universe. The name of the particle is named after Scottish physicist Peter Higgs, who calculated the existence of the particle. While everyone calls the particle Higgs, Peter Higgs is called the particle of God (God particle).

In addition, there are many mysteries of physics and the universe, including supersymmetry, black matter, dark energy …, unsolved mysteries hidden in the dimensions of space that the LHC has. the task of discovery, (most elementary particles cannot be seen leaving traces after the collision but some particles are not detected because they can move along … extra dimensions of space, as well as create objects). Invisible dark matter).

17
Apr

Smart Shoes Generate Electricity

A part of the shoe is designed to generate electricity from human walking or running, which provides energy to the sensor or other electronic equipment.

The same is integrated in the shoe, a device that will generate energy when the heel hits the ground. Meanwhile, the equipment is left to yield when the legs are rhythmic and move forward as walking or running.

The equipment is mounted on the outside of the shoes, or the heel. (Photo: Kelvis Ylli/IOP Publishing)

― “Both devices rely on a principle of electromagnetic induction,” Klevis Ylli, a researcher with the Institute of Microfabrication and Information technology of Germany, for. Each device contains a coil and the magnet layers stacked. When man is walking or running, the magnet moves and leaves the magnetic field inside the rope variable. The changing magnetic field generates electricity inside the conductor. They can connect and supply electricity to the electronic parts that are mounted right in the shoe.

The original receiver is 70mm long, 19, 5mm wide and about 15mm high. It weighs only 25g, so the shoe loafers will not feel the weight. The remaining device is larger, weighs 150 grams and is developed with another application that provides power to the indoor positioning system (replacing the GPS positioning System). The sensor determines the movement speed of the human leg and from this data, the positioning system can calculate the path that we have gone.

Describe the device that is attached inside the shoe. (Photo: BBC)

According to recent test results, the walking movement of a person who produces enough energy for the operation of the temperature sensor (attached in the shoe) and a wireless generator. This player will transmit data from the sensor to a smartphone.

In the future, scientists hope they can be used to create wearable products or carry on people without ever needing the battery charger.